Division of Organogenesis
Department of Kidney Development
Publications

Acebedo AR, Suzuki K, Hino S, Alcantara MC, Sato Y, Haga H, Matsumoto KI, Nakao M, Shimamura K, Takeo T, Nakagata N, Miyagawa S, Nishinakamura R, Adelstein RS, Yamada G. Mesenchymal actomyosin contractility is required for androgen-driven urethral masculinization in mice. Commun Biol 2:95, 2019. 

 

Islam M and Nishinakamura R. How to rebuild the kidney: recent advances in kidney organoids. J Biochem. Epub ahead of print, 2019. (review)

 

Yoshimura Y, Taguchi A, and Nishinakamura R. Generation of Three-Dimensional Nephrons from Mouse and Human Pluripotent Stem Cells. Methods Mol Biol 1926:87-102, 2019. in Kidney Organogenesis: methods and protocols (edited by Seppo Vainio),  Springer.

 

Naganuma H and Nishinakamura R. From organoids to transplantable artificial kidneys. Transpl Int  Epub ahead of print, Feb 1, 2019. (review)

 

Murakami Y, Naganuma H, Tanigawa S, Fujimori T, Eto M, and Nishinakamura R. Reconstitution of the embryonic kidney identifies a donor cell contribution to the renal vasculature upon transplantation. Sci Rep 9:1172, 2019.

 

Yoshimura Y, Taguchi A, Tanigawa S, Yatsuda J, Kamba T, Takahashi S, Kurihara H, Mukoyama M, and Nishinakamura R. Manipulation of nephron-patterning signals enables selective induction of podocytes from human pluripotent stem cells. J Am Soc Nephrol 30(2):304-321, 2019.

NewPress

 

Tajiri S, Yamanaka S, Fujimoto T, Matsumoto K, Taguchi A, Nishinakamura R, Okano HJ, and Yokoo T. Regenerative potential of induced pluripotent stem cells derived from patients undergoing haemodialysis in kidney regeneration. Sci Rep 8(1):14919, 2018.

 

Tanigawa S, Islam M, Sharmin S, Naganuma H, Yoshimura Y, Haque F, Era T, Nakazato H, Nakanishi K, Sakuma T, Yamamoto T, Kurihara H, Taguchi A, and Nishinakamura R. Organoids from nephrotic disease-derived iPSCs identify impaired NEPHRIN localization and slit diaphragm formation in kidney podocytes. Stem Cell Reports 11: 727–740, 2018.

NewPress

 

Koso H, Nishinakamura R, and Watanabe S. Sall1 regulates microglial morphology cell autonomously in the developing retina. Adv Exp Med Biol 1074:209-215, 2018.

 

Hayata T, Chiga M, Ezura Y, Asashima M, Katabuchi H, Nishinakamura R, and Noda M. Dullard deficiency causes hemorrhage in the adult ovarian follicles. Genes Cells 23(5):345-356, 2018.

 

Nishinakamura R. The era of human developmental nephrology. J Am Soc Nephrol  29(3):705-706, 2018.

 

Taguchi A and Nishinakamura R. Higher-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell 21: 730-746, 2017.

NewPress

 

Susman MW, Karuna EP, Kunz RC, Gujral TS, Cantú AV, Choi SS, Jong BY, Okada K, Scales MK, Hum J, Hu LS, Kirschner MW, Nishinakamura R, Yamada S, Laird DJ, Jao LE, Gygi SP, Greenberg ME, Ho HH. Kinesin superfamily protein Kif26b links Wnt5a-Ror signaling to the control of cell and tissue behaviors in vertebrates. Elife 6: e26509, 2017.

 

Hosoe-Nagai Y, Hidaka T, Sonoda A, Sasaki Y, Yamamoto-Nonaka K, Seki T, Asao R, Tanaka E, Trejo JAO, Kodama F, Takagi M, Tada N, Ueno T, Nishinakamura R, Tomino Y, Asanuma K. Re-expression of Sall1 in podocytes protects against adriamycin-induced nephrosis. Lab Invest 97:1306-1320, 2017.

 

Kaku Y, Taguchi A, Tanigawa S, Haque F, Sakuma T, Yamamoto T and Nishinakamura R. PAX2 is dispensable for in vitro nephron formation from human induced pluripotent stem cells. Scientific Reports 7: 4554, 2017.

NewPress

 

Nishinakamura R and Takasato M. Human development, heredity and evolution. Development 144(12): 2099-2103, 2017. Review.

http://dev.biologists.org/content/144/12/2099.long

 

Haque F, Kaku Y, Fujimura S, Ohmori T, Adelstein RS, and Nishinakamura R. Non-muscle myosin II deletion in the developing kidney causes ureter-bladder misconnection and apical extrusion of the nephric duct lineage epithelia. Dev Biol 427(1):121-130, 2017.

NewPress

 

Yoshimura Y, Taguchi A, and Nishinakamura R. Generation of a three-dimensional kidney structure from pluripotent stem cells. Methods Mol Biol 1597: 179-193, 2017. Review

 

Xiong J, Zhang Z, Chen J, Huang H, Xu Y, Ding X, Zheng Y, Nishinakamura R, Xu GL, Wang H, Chen S, Gao S, Zhu B. Cooperative action between SALL4A and TET proteins in stepwise oxidation of 5-methylcytosine. Mol Cell 64(5):913-925, 2016.

 

Buttgereit A, Lelios I, Yu X, Vrohlings M, Krakoski NR, Gautier EL, Nishinakamura R, Becher B, Greter M. Sall1 is a transcriptional regulator defining microglia identity and function. Nat Immunol. 17(12):1397-1406, 2016.

 

Tanigawa S and Nishinakamura R. Expanding nephron progenitors in vitro: a step toward regenerative medicine in nephrology. Kidney Int 90: 925-927, 2016.

 

Miller A, Ralser M, Kloet SL, Loos R, Nishinakamura R, Bertone P, Vermeulen M, and Hendrich B. Sall4 controls differentiation of pluripotent cells independently of the Nucleosome Remodelling and Deacetylation (NuRD) complex. Development 143(17):3074-3084, 2016.

 

Sasaki T, Tanaka Y, Kulkeaw K, Yumine-Takai A, Tan KS, Nishinakamura R, Ishida J, Fukamizu A, and Sugiyama D. Embryonic Intra-Aortic Clusters Undergo Myeloid Differentiation Mediated by Mesonephros-Derived CSF1 in Mouse. Stem Cell Rev 12(5):530-542, 2016.

 

Tanigawa S, Taguchi A, Sharma N, Perantoni AO, and Nishinakamura R. Selective in vitro propagation of nephron progenitors from embryos and pluripotent stem cells. Cell Reports  15: 801-813, 2016.

NewPress

 

Novo CL, Tang C, Ahmed K, Djuric U, Fussner E, Mullin NP, Morgan NP, Hayre J, Sienerth AR, Elderkin S, Nishinakamura R, Chambers I, Ellis J, Bazett-Jones DP, and Rugg-Gunn PJ. The pluripotency factor Nanog regulates pericentromeric heterochromatin organization in mouse embryonic stem cells. Genes Dev. 30(9):1101-1115, 2016.

 

Morita Y, Andersen P, Hotta A, Tsukahara Y, Sasagawa N, Hayashida N, Koga C, Nishikawa M, Saga Y, Evans SM, Koshiba-Takeuchi K, Nishinakamura R, Yoshida Y, Kwon C, and Takeuchi JK. Sall1 transiently marks undifferentiated heart precursors and regulates their fate. J. Mol. Cell Cardiol. 92:158-162, 2016.

 

Nishinakamura R, Sharmin S, and Taguchi A. Induction of nephron progenitors and glomeruli from human pluripotent stem cells. Pediatr Nephrol. Epub ahead of print, Feb 11, 2016

 

Nishinakamura R. Stem cells and renal development in 2015: Advances in generating and maintaining nephron progenitors. Nat. Rev. Nephrol. 12(2):67-68, 2016.
  
Nishinakamura R and Taguchi A. From development to regeneration: Kidney reconstitution in vitro and in vivo. (Chapter 34) In: Kidney development, disease, repair, and regeneration (edited by Melissa H Little) Academic Press 2015: 463-472 (Book Chapter)

 

Sharmin S, Taguchi A, Kaku Y, Yoshimura Y, Ohmori T, Sakuma T, Mukoyama M, Yamamoto T, Kurihara H and Nishinakamura R. Human induced pluripotent stem cell-derived podocytes mature into vascularized glomeruli upon experimental transplantation. J. Am. Soc. Nephrol. 27: 1778-1791, 2016.

NewPress

 

Ohmori T, Tanigawa S, Kaku Y, Fujimura S, and Nishinakamura R. Sall1 in renal stromal progenitors non-cell autonomously restricts the excessive expansion of nephron progenitors. Sci. Rep. 5: 15676, 2015. doi:10.1038/srep15676

 

Tanigawa S, Sharma N, Hall MD, Nishinakamura R, Perantoni AO. Preferential propagation of competent SIX2+ nephronic progenitors by LIF/ROCKi treatment of the metanephric mesenchyme. Stem Cell Reports 5(3):435-447, 2015.

NewPress

 

Hirsch S, El-Achkar TM, Robbins L, Basta J, Heitmeier MR, Nishinakamura R, Rauchman M. A mouse model of Townes-Brocks syndrome expressing a truncated mutant Sall1 protein is protected from acute kidney injury. Am. J. Physiol. Renal Physiol. 309 (10): F8520863, 2015.

 

Sweetwyne MT, Gruenwald A, Niranjan T, Nishinakamura R, Strobl LJ, Susztak K. Notch1 and Notch2 in podocytes play differential roles during diabetic nephropathy development. Diabetes 64 (12): 4099-4111, 2015.

 

Escobar D, Hepp MI, Farkas C, Campos T, Sodir NM, Morales M, Álvarez CI, Swigart L, Evan GI, Gutiérrez JL, Nishinakamura R, Castro AF, Pincheira R. Sall2 is required for proapoptotic Noxa expression and genotoxic stress-induced apoptosis by doxorubicin.Cell Death Dis. 6:e1816, 2015.

 

Hayata T, Ezura Y, Asashima M, Nishinakamura R, Noda M. Dullard/Ctdnep1 regulates endochondral ossification via suppression of TGF-β signaling. J. Bone. Miner. Res.30(5):947, 2015.

 

Akiyama R, Kawakami H, Wong J, Oishi I, Nishinakamura R, Kawakami Y. Sall4-Gli3 system in early limb progenitors is essential for the development of limb skeletal elements. Proc. Natl. Acad. Sci. U. S. A. 112(16):5075-5080, 2015.

 

Chiga M, Ohmori T, Ohba T, Katabuchi H and Nishinakamura R. Preformed Wolffian duct regulates Müllerian duct elongation independently of canonical Wnt signaling or Lhx1 expression. Int. J. Dev. Biol. 58(9): 643-718, 2014.

 

Taguchi A and Nishinakamura R. Nephron reconstitution from pluripotent stem cells.Kidney Int. 87: 894-900, 2015.

 

Suzuki K, Numata T, Suzuki H, Raga DD, Ipulan LA, Yokoyama C, Matsushita S, Hamada M, Nakagata N, Nishinakamura R, Kume S, Takahashi S, Yamada G. Sexually dimorphic expression of Mafb regulates masculinization of the embryonic urethral formation. Proc. Natl. Acad. Sci. U. S. A. 111(46):16407-16412, 2014.

 

Yamaguchi YL, Tanaka SS, Kumagai M, Fujimoto Y, Terabayashi T, Matsui Y, Nishinakamura R. Sall4 is essential for mouse primordial germ cell specification by suppressing somatic cell program genes. Stem Cells. 33(1): 289-300, 2015.

NewPress

 

Recuenco MC, Ohmori T, Tanigawa S, Taguchi A, Fujimura S, Conti MA, Wei Q, Kiyonari H, Abe T, Adelstein RS and Nishinakamura R. Non-muscle myosin II regulates the morphogenesis of metanephric mesenchyme-derived immature nephrons. J. Am. Soc. Nephrol. 26(5): 1081-1091, 2015.

NewPress

 

Hayata T, Ezura Y, Asashima M, Nishinakamura R, and Noda M. Dullard/Ctdnep1 regulates endochondral ossification via suppression of TGF- ß signaling. J. Bone Miner. Res. 30(2): 318-329, 2015.

 

Tanaka SS and Nishinakamura R. Regulation of male sex determination: genital ridge formation and Sry activation in mice. Cell. Mol. Life Sci. 71(24):4781-4802, 2014.

 

Nishita M, Qiao S, Miyamoto M, Okinaka Y, Yamada M, Hashimoto R, Iijima K, Otani H, Hartmann C, Nishinakamura R, and Minami Y. Role of Wnt5a-Ror2 signaling in morphogenesis of the metanephric mesenchyme during ureteric budding. Mol. Cell Biol. 34(16): 3096-3105, 2014.

 

Kanda S, Tanigawa S, Ohmori T, Taguchi A, Kudo K, Suzuki Y, Sato Y, Hino S, Sander M, Perantoni AO, Sugano S, Nakao M, Nishinakamura R. Sall1 maintains nephron progenitors and nascent nephrons by acting as both an activator and a repressor. J. Am. Soc. Nephrol. 25(11):2584-2595, 2014.

NewPress

 

Ipulan LA, Suzuki K, Sakamoto Y, Murashima A, Imai Y, Omori A, Nakagata N, Nishinakamura R, Valasek P, Yamada G. Non-myocytic androgen receptor regulates the sexually dimorphic development of the embryonic bulbocavernosus muscle. Endocrinology 155(7):2467-2479, 2014.

 

Murashima A, Akita H, Okaszawa M, Kishigami S, Nakagata N, Nishinakamura R, and Yamada G. Midline-derived Shh regulated mesonephric tubule formation through the paraxial mesoderm. Dev. Biol. 386: 216-226, 2014.

 

Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, and Nishinakamura R. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14: 53-67, 2014.

NewPress

 

Nishinakamura R and Sakaguchi M. BMP signaling and its modifiers in kidney development. Pediatr. Nephrol.29: 681-686, 2014.

 

Liu L, Souto J, Liao W, Jiang Y, Li Y, Nishinakamura R, Huang S, Rosengart T, Yang VW, Schuster M, Ma Y, and Yang J. Histone lysine-specific demethylase 1 (LSD1) protein Is involved in Sal-like protein 4 (SALL4)-mediated transcriptional repression in hematopoietic stem cells. J. Biol. Chem. 288(48):34719-34728, 2013.

 

Fujimoto Y, Tanaka SS, Yamaguchi YL, Kobayashi H, Kuroki S, Tachibana M, Shinomura M, Kanai Y, Morohashi K, Kawakami K, and Nishinakamura R. Homeoprotein Six1 and Six4 regulate male sex determination and mouse gonadal development. Dev. Cell 26: 416-430, 2013.

NewPress

 

Das A, Tanigawa S, Karner CM, Xin M, McNeil H, Lum L, Chen C, Olson EN, Perantoni AO, and Carroll TJ. Stromal-epithelial crosstalk regulates kidney progenitor cell differentiation. Nat. Cell. Biol.,15(9): 1035-1044, 2013.

 

Toyoda D, Taguchi A, Chiga M, Ohmori T, and Nishinakamura R. Sall4 is expressed in the caudal Wolffian duct and the ureteric bud, but dispensable for kidney development.Plos One 8(6): e68508. 2013.

 

Kaku Y, Ohmori T, Kudo K, Fujimura S, Suzuki K, Evans SM, Kawakami Y, and Nishinakamura R. Islet1 deletion causes mouse kidney agenesis and hydroureter resembling CAKUT J. Am. Soc. Nephrol. 24(8): 1242-1249, 2013.

NewPress

 

Tanaka SS, Nakane A, Yamaguchi YL, Terebayashi T, Abe T, Nakao K, Asashima M, Steiner KA, Tam PP, and Nishinakamura R. Dullard/Ctdnep1 modulates WNT signaling activity for the formation of primordial germ cells in the mouse embryo. PLoS One 8(3) e57428, 2013.

 

Sakaguchi M, Sharmin S, Taguchi A, Ohmori T, Fujimura S, Abe T, Kiyonari H, Komatsu Y, Mishina Y, Asashima M, Araki E, and Nishinakamura R. The phosphatase Dullard negatively regulates BMP signalling and is essential for nephron maintenance after birth.Nat. Commun. 4: 1398, 2013. doi: 10.1038/ncomms2408

NewPress

 

Morimoto M, Nishinakamura R, Saga Y, and Kopan R. Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development 139(23):4365-73, 2012.

 

Terabayashi T, Sakaguchi M, Shinmyozu K, Ohshima T, Johjima A, Ogura T, Miki H, and Nishinakamura R. Phosphorylation of Kif26b promotes its polyubiquitination and subsequent proteasomal degradation during kidney development. PLoS One7(6):e39714, 2012.

 

Usui J, Kobayashi K, Yamaguchi T, Knisely AS, Nishinakamura R, and Nakauchi H. Generation of kidney from pluripotent stem cells via blastocyst complementation. Am. J. Pathol. 80(6): 2417-2426, 2012.

 

Hobbs RM, Fagoonee S, Papa A, Webster K, Altruda F, Nishinakamura R, Chai L, and Pandolfi PP. Functional antagonism between Sall4 and Plzf define germline progenitors.Cell Stem Cell 10(3): 284-298, 2012.

 

Harrison SJ, Nishinakamura R, Jones KR, and Monaghan AP. Sall1 regulates cortical neurogenesis and laminar fate specification in mice: implications for neural abnormalities in Townes-Brocks syndrome. Dis. Model Mech. in press.

 

Tanaka SS, Kojima Y, Yamaguchi YL, Nishinakamura R, and Tam PP. Impact of WNT signaling on tissue lineage differentiation in the early mouse embryo. Dev. Growth Differ. 53 (7): 843-56, 2011.

 

Nishinakamura R, Uchiyama Y, Sakaguchi M, and Fujimura S. Nephron progenitors in the metanephric mesenchyme. Pediatr. Nephrol. 26(9): 1463-1467, 2011.

 

Yamaguchi YL, Tanaka SS, Oshima N, Kiyonari H, Asashima M, and Nishinakamura R. Translocon-associated protein subunit Trap- γ/ Ssr3 is required for vascular network formation in the mouse placenta. Dev. Dyn. 240(2): 394-403, 2011.

 

Tanaka SS, Yamaguchi YL, Steiner KA, Nakano T, Nishinakamura R, Kwan KM, Behringer RR and Tam PP. Loss of Lhx1 activity impacts on the localization of primordial germ cells in the mouse. Dev. Dyn. 239(11): 2851-2859, 2010.

 

Uchiyama Y, Sakaguchi M, Terabayashi T , Inenaga T, Inoue S, Kobayashi C, Oshima N, Kiyonari H, Nakagata N, Sato Y, Seki guchi K, Miki H, Fujimura S, Tanaka SS and Nishinakamura R. Kif26b, a kinesin family gene, regulates adhesion of the embryonic kidney mesenchyme. Proc. Natl. Acad. Sci. USA 107(20): 9240-9245, 2010

NewPress

 

Fujimura S, Jiang Q, Kobayashi C, and Nishinakamura R. Notch2 activation in the embryonic kidney depletes nephron progenitors. J. Am. Soc. Nephrol. 21(5):803-810, 2010.

NewPress

 

Yoshimura Y, Terabayashi T, and Miki H. Par1b/MARK2 phosphorylates kinesin-like motor protein GAKIN/KIF13B to regulate axon formation. Mol. Cell Biol. 30(9):2206-2219, 2010

 

Jiang, Q, Fujimura S, Kobayashi C, and Nishinakamura R. Overexpression of Sall1 in vivo leads to reduced body weight without affecting kidney development. J. Biochem.147: 445-450, 2010.

 

Inoue S, Inoue M, Fujimura S, and Nishinakamura R. A mouse line expressing Sall1 -driven inducible Cre recombinase in the kidney mesenchyme. Genesis 48: 207-212, 2010.

 

Egger B, Steinke D, Tarui H, Mulder KD, Arendt D, Borgonie G, Funayama N, Gschwentner R, Hartenstein V, Hobmayer B, Hooge M, Hrouda M, Ishida S, Kobayashi C, Kuales G, Nishimura O, Pfister D, Rieger R, Salvenmoser W, Smith J, Technau U, Tyler S, Agata K, Salzburger W, and Ladurner P. To be or not to be a flatworm: the acoel controversy. PLoS ONE 4: 1-10, 2009.

 

Terabayashi T, Funato Y, Fukuda M, and Miki H. A coated vesicle-associated kinase of 104 kDa (CVAK104) induces lysosomal degradation of Frizzled 5 (Fzd5). J. Biol. Chem. 284: 26716-26724, 2009.

 

Yuri S, Fujimura S, Nimura K, Takeda N, Toyooka Y, Fujimura Y, Aburatani H, Ura K, Koseki H, Niwa H, and Nishinakamura R. Sall4 is essential for stabilization, but not pluripotency, of embryonic stem cells by repressing aberrant trophectoderm gene expression. Stem Cells 27(4):796-805, 2009.

NewPress

 

Oikawa T, Kamiya A, Kakinuma S, Zeniya M, Nishinakamura R, Tajiri H, Nakauchi H. Sall4 regulates cell fate decision in fetal hepatic stem/progenitor cells.Gastroenterology 136(3):1000-1011, 2009.

 

Kawakami Y, Uchiyama Y, Esteban RC, Inenaga T, Koyano-Nakagawa N, Kawakami H, Marti M, Kmita M, Monaghan-Nichols P, Nishinakamura R, and Belmonte JC. Sall genes regulate region-specific morphogenesis in the mouse limb by modulating Hox activities.Development 136(4):585-594, 2009.

NewPress

 

Islam SM, Shinmyo Y, Okafuji T, Su Y, Naser IB, Ahmed G, Xhang S, Chen S, Ohta K, Kiyonari H, Abe T, Tanaka S, Nishinakamura R, Terashima T, Kitamura T, and Tanaka H. Draxin, a novel repulsive guidance protein for spinal cord and forebrain commissures.Science 323(5912), 388-393, 2009.

Nakane A, Kojima Y, Hayashi Y, Kohri K, Masui S, and Nishinakamura R. Pax2 overexpression in embryoid bodies induces upregulation of integrin alpha8 and aquaporin-1. In Vitro Cell Dev. Biol. Anim. 45(1-2), 62-68, 2009.

 

Takasato M, Kobayashi C, Okabayashi K, Kiyonari H, Oshima N, Asashima M, and Nishinakamura R. Trb2, a mouse homolog of tribbles, is dispensable for kidney and mouse development. Biochem. Biophys. Res. Commun. 373(4), 648-652, 2008.

 

Nishinakamura R . Stem cells in the embryonic kidney. Kidney Int. 73(8): 913-917, 2008.

Harrison SJ, Nishinakamura R , Monaghan AP. Sall1 regulates mitral cell development and olfactory nerve extension in the developing olfactory bulb. Cereb. Cortex 2007 Nov 17; [Epub ahead of print]

 

Kobayashi C, Saito Y, Ogawa K, Agata K. Wnt signaling is required for antero-posterior patterning of the planarian brain. Dev. Biol. 306(2):714-724, 2007.

Kobayashi, H., Kawakami, K., Asashima, M. Nishinakamura, R. Six1 and Six4 are essential for Gdnf expression in the metanephric mesenchyme and ureteric bud formation, while Six1 deficiency alone causes mesonephric tubule defects. Mech. Dev.124(4): 290-303, 2007.

NewPress

 

Yamashita, K., Sato, A., Asashima, M., Wang, P.C., Nishinakamura, R. Mouse homolog of SALL1, a causative gene for Townes-Brocks syndrome, binds to A/T-rich sequences in pericentric heterochromatin via its C-terminal zinc finger domains. Genes Cells 12(2) :171-182, 2007.

 

Nishinakamura, R., Osafune, K. Essential roles of Sall family genes in kidney development.
J. Physiol. Sci. 56(2): 131-136. 2006.

 

Sakaki-Yumoto, M., Kobayashi, C., Sato, A., Fujimura, S., Matsumoto, Y., Takasato, M., Kodama, T., Aburatani, H., Asashima,M., Yoshida, N., Nishinakamura, R. The murine homolog of Sall4, a causative gene in Okihiro syndrome, is essential for embryonic stem cell proliferation, and cooperates with Sall1 in anorectal, heart, brain and kidney development. Development 133 (15): 3005-3013, 2006.

 

Ogawa, K., Nishinakamura, R., Iwamatsu, Y., Shimosato, D., Niwa, H. Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells. Biochem Biophys Res Commun. 343(1): 159-166, 2006.

 

Osafune, K., Takasato, M., Kispert, A., Asashima, M., Nishinakamura, R. Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony-forming assay. Development 133(1): 151-161, 2006.

 

Nishinakamura, R., Takasato, M. Essential roles of Sall1 in kidney development.Kidney. Int. 68(5): 1948-1950, 2005.

 

Takasato, M., Osafune, K., Matsumoto, Y., Kataoka, Y., Yoshida, N., Meguro, H., Aburatani, H., Asashima, M., Nishinakamura, R. Identification of kidney mesenchymal genes by a combination of microarray analysis and Sall1-GFP knockin mice. Mech. Dev. 121 (6):547-557, 2004.

 

Sato, A., Kishida, S., Tanaka, T., Kikuchi, A., Kodama, T., Asashima, M., Nishinakamura, R. Sall1, a causative gene for Townes-Brocks syndrome, enhances the canonical Wnt signaling by localizing to heterochromatin. Biochem. Biophys. Res. Commun. 319(1): 103-113, 2004.

 

Nakayama N, Han CY, Cam L, Lee JI, Pretorius J, Fisher S, Rosenfeld R, Scully S, Nishinakamura R, Duryea D, Van G, Bolon B, Yokota T, Zhang K. A novel chordin-like BMP inhibitor, CHL2, expressed preferentially in chondrocytes of developing cartilage and osteoarthritic joint cartilage. Development.131(1): 229-240, 2004.

 

Nishinakamura, R. Kidney development conserverd overspecies:essential roles of Sall1.Semin. Cell Dev. Biol. 14 (4):241-247, 2003.

 

Sato, A., Matsumoto, Y., Koide, U., Kataoka, Y., Yoshida, N,. Yokota, T., Asashima, M., and Nishinakamura, R. Zinc finger protein Sall2 is not essential for embryonic and kidney development. Mol. Cell. Biol. 23 (1):62-69, 2003.

 

Osafune, K., Nishinakamura, R., Komazaki, S., and Asashima, M. In vitro induction of the pronephric duct in Xenopus explants. Dev. Growth. Differ. 44 (2):161-167, 2002.

 

Nishinakamura, R., Matsumoto, Y., Nakao, K., Nakamura, K., Sato, A., Copeland, NG., Gilbert, DJ, Jenkins, NA., Scully, S., Lacey, DL., Katsuki, M., Asashima, M., and Yokota, T. Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128: 3105-3115, 2001.

 

Nakayama, N., Han, C., Nishinakamura, R., Scully, S., He, C., Zeni, L., Yamane, H., Chang, D., Yu, D., Yokota, T., and Wen, D. A novel chordin-like protein inhibitor for bone morphogenetic proteins expressed preferentially in mesenchymal cell lineages. Dev. Biol. 232:372-387, 2001.

 

Sato, A., Asashima, M., Yokota, T. and Nishinakamura, R. Cloning and expression pattern of a Xenopus pronephros-specific gene, XSMP-30. Mech Dev. 92:273-275, 2000

 

Matsuzaki, K., Katayama, K., Takahashi, Y., Nakamura, I., Udagawa, N., Tsurukai, T., Nishinakamura, R., Toyama, Y., Yabe, Y., Hori, M., Takahashi, N., and Suda, T. Human osteoclast-like cells are formed from peripheral blood mononuclear cells in a coculture with SaOS-2 cells transfected with the parathyroid hormone (PTH)/PTH-related protein receptor gene. Endocrinology 140(2):925-932, 1999.

 

Onuma, Y., Nishinakamura, R., Takahashi, S., Yokota, T. and Asashima, M. Molecular cloning of a novel Xenopus spalt gene (Xsal-3). Biochem Biophys Res Commun.264:151-156, 1999.

 

Nishinakamura, R., Matsumoto, Y., Matsuda, T., Ariizumi, T., Heike, T., Asashima, M. and Yokota, T. Activation of Stat3 by cytokine receptor gp130 ventralizes Xenopus embryos independent of BMP-4. Dev. Biol. 216:481-490, 1999.

 

Nishinakamura, R., Matsumoto, Y., Uochi, T., Asashima, M., and Yokota, T. Xenopus FK 506-binding protein homolog induces a secondary axis in frog embryos, which is inhibited by coexisting BMP 4 signaling. Biochem. Biophys. Res. Commun. 239:585-591,1997.

 

Dirksen, U., Nishinakamura, R., Groneck, P., Hattenhorst, U., Nogee, L., Murray, R., and Burdach, S. Human pulmonary alveolar proteinosis associated with a defect in GM-CSF/IL-3/IL-5 receptor common βchain expression. J. Clin. Invest. 100:2211-2217, 1997.

 

Cooke, K.R., Nishinakamura, R., Martin, T.R., Kobzik, L., Brewer, J., Whitsett, J.A., Bungard, D., Murray, R., and Ferrara, J.L. Persistence of pulmonary pathology and abnormal lung function in IL-3/GM-CSF/IL-5 βc receptor-deficient mice despite correction of alveolar proteinosis after BMT. Bone Marrow Transplant. 20:657-662, 1997.

 

Mocci, S., Dalrymple, S.A., Nishinakamura, R., and Murray, R. The cytokine stew and innate resistance to L. monocytogenes. Immunol. Rev. 158:107-114, 1997.

 

Miyajima, A., Kinoshita, T., Wakao, H., Hara, T., Yoshimura, A., Nishinakamura, R., Murray, R., and Mui, A. Signal transduction by the GM-CSF, IL-3 and IL-5 receptors.Leukemia Suppl. 3:418-422, 1997.

 

Nishinakamura, R., Wiler, R., Dirksen, U., Morikawa, Y., Arai, K., Miyajima, A., Burdach, S., and Murray, R. The pulmonary alveolar proteinosis in granulocyte macrophage colony-stimulating factor/ interleukins 3/5 βc receptor-deficient mice is reversed by bone marrow transplantation. J. Exp. Med. 183:2657-2662, 1996.

 

Nishinakamura, R., Miyajima, A., Mee, P.J., Tybulewicz, V.L.J., and Murray, R. Hematopoiesis in mice lacking the entire granulocyte-macrophage colony-stimulating factor/interleukin-3/interleukin-5 functions. Blood 88:2458-2464, 1996.

 

Nishinakamura, R., Burdach, S., Dirksen, U., and Murray, R. The in vivo role of the receptors for IL-3, GM-CSF, and IL-5 (βc andβIL3). Contemporary Immunology: Cytokine Knockouts. Humana Press Inc. 419-434, 1995.

 

Nishinakamura, R., Nakayama, N., Hirabayashi, Y., Inoue, T., Aud, D., McNeil, T., Azuma, S., Yoshida, S., Toyoda, Y., Arai, K., Miyajima, A., and Murry, R. Mice deficient for the IL-3/GM-CSF/IL-5 βc receptor exhibit lung pathology and impaired immune response, while βIL3 receptor-deficient mice are normal. Immunity 2:211-222, 1995.