Division of Developmental Regulation
Department of Cell Maintenance
Publications

Mustofa MK, Tanoue Y, Chirifu M, Shimasaki T, Tateishi C, Nakamura T, *Tateishi S. RAD18 mediates DNA double-strand break-induced ubiquitination of chromatin protein. J Biochem. 2021 Sep 22. 170(1):33-40. DOI: 10.1093/jb/mvab010

 

Lou J, Yang Y, Gu Q, Price BA, Qiu Y, Fedoriw Y, Desai S, Mose LE, Chen B, Tateishi S, Parker JS, Vaziri C, Wu D. Rad18 mediates specific mutational signatures and shapes the genomic landscape of carcinogen-induced tumors in vivo. NAR Cancer. 2021 Mar;3(1):zcaa037. doi: 10.1093/narcan/zcaa037. Epub 2021 Jan 6.

 

Takaoka Y, Ohta M, Tateishi S, Sugano A, Nakano E, Miura K, Suzuki T, Nishigori C. In Silico Drug Repurposing by Structural Alteration after Induced Fit: Discovery of a Candidate Agent for Recovery of Nucleotide Excision Repair in Xeroderma Pigmentosum Group D Mutant (R683W). Biomedicines. 2021 Mar 3. 9(3):249. DOI: 10.3390/biomedicines9030249

 

Mustofa, M.K., Tanoue, Y., Tateishi, C., Vaziri, C., Tateishi, S. Roles of Chk2/CHEK2 in guarding against environmentally-induced DNA damage and replication-stress. Environ. Mol. Mutagen. 2020 (Review)

 

Mustofa MK, Tanoue Y, Chirifu M, Shimasaki T, Tateishi C, Nakamura T, *Tateishi S. RAD18 mediates DNA double-strand break-induced ubiquitination of chromatin protein. J Biochem. 2021 Sep 22. 170(1):33-40. DOI: 10.1093/jb/mvab010

Lou J, Yang Y, Gu Q, Price BA, Qiu Y, Fedoriw Y, Desai S, Mose LE, Chen B, Tateishi S, Parker JS, Vaziri C, Wu D. Rad18 mediates specific mutational signatures and shapes the genomic landscape of carcinogen-induced tumors in vivo. NAR Cancer. 2021 Mar;3(1):zcaa037. doi: 10.1093/narcan/zcaa037. Epub 2021 Jan 6.

Takaoka Y, Ohta M, Tateishi S, Sugano A, Nakano E, Miura K, Suzuki T, Nishigori C. In Silico Drug Repurposing by Structural Alteration after Induced Fit: Discovery of a Candidate Agent for Recovery of Nucleotide Excision Repair in Xeroderma Pigmentosum Group D Mutant (R683W). Biomedicines. 2021 Mar 3. 9(3):249. DOI: 10.3390/biomedicines9030249

Mustofa, M.K., Tanoue, Y., Tateishi, C., Vaziri, C., Tateishi, S. Roles of Chk2/CHEK2 in guarding against environmentally-induced DNA damage and replication-stress. Environ. Mol. Mutagen. 2020 (Review)

 

Ariumi, Y., Kawano, K., Yasuda-Inoue, Y., Kuroki, M., Fukuda, H., Siddiqui, R., Turelli, P, Tateishi, S. DNA repair protein Rad18 restricts LINE-1 mobility. Sci. Rep. 8, 15894 (2018)
https://www.nature.com/articles/s41598-018-34288-9

 

Yang, Y., Gao, Y., Zlatanou, A., Tateishi, S., Yurchenko, V., Rogozin, I.B., Vaziri, C. Diverse roles of RAD18 and Y-family DNA polymerases in tumorigenesis. Cell Cycle 17, 833-843 (2018)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6056224/

 

Tanoue, Y., Toyoda, T., Sun, J, Mustofa, M.K., Tateishi, C., Endo, S., Motoyama, N., Araki, K., Wu, D., Okuno, Y., Tsukamoto, T., Takeya, M., Ihn, H., Vaziri, C., Tateishi, S. Differential roles of Rad18 and Chk2 in genome maintenance and skin carcinogenesis following UV exposure.
J. Invest. Dermatol. 138, 2550-2557 (2018)
https://www.jidonline.org/article/S0022-202X(18)32036-0/fulltext

 

Yang Y., Gao, Y., Mutter-Rottmayer, L., Zlatanou, A., Durando, M., Weimin Ding, Wyatt, D., Ramsden, D., Tanoue, Y., Tateishi, S., Vaziri C. DNA repair factor RAD18 and DNA polymerase Polκ confer tolerance of oncogenic DNA replication stress. J. Cell Biol. 216, 3097-3115 (2017)

 

Shimizu, T., Tateishi, S., Tanoue, Y., Azuma, T., Ohmori, H. Somatic hypermutation of immunoglobulin genes in Rad18 knockout mice. DNA Repair 50, 54-60 (2017) 

 

Gao, Y., Tateishi, S., Vaziri, C. A. Pathological Trans-Lesion Synthesis in Cancer. Cell Cycle Jul 27:0 (2016)

 

Gao, Y., Mutter-Rottmayer,E., Greenwalt, M. A., Goldfarb, D., Yan, F., Yang, Y.,  Martinez-Chacin, C. R., Pearce, H. K., Tateishi, S., Major, B. M., Vaziri, C. A. Neomorphic Cancer Cell-Specific Role of MAGE-A4 in Trans-Lesion Synthesis (TLS).  Nat. Commun. 7, 12105 (2016)

 

Yang, Y., Poe, J. C., Yang, L., Fedoriw, A., Desai, S., Magnuson, T., Li, Z., Fedoriw, Y., Araki, K., Gao, Y., Tateishi, S., Sarantopoulos, S. and Vaziri, C. Rad18 confers hematopoietic progenitor cell DNA damage tolerance independently of the Fanconi Anemia pathway in vivo. Nucleic Acids Res. Feb 15. pii: gkw072. (2016)

 

Vaziri, C.*, Tateishi, S.*, MutterRottmayer, L., Gao,Y. Roles of RAD18 in DNA Replication and PostReplication Repair (PRR). In Genome Stability (eds., Kovalchuk I. & Kovalchuk O.), Elsevier, Amsterdam (2016)

 

Sasatani, M., Xu, Y., Kawai, H., Cao, L., Tateishi, S., Shimura, T., Li, J., Iizuka, D., Noda, A., Hamasaki, K., Kusunoki, Y., Kamiya, K. RAD18 activates the G2/M checkpoint through DNA damage signaling to maintain genome integrity after ionizing radiation exposure. PLos One 10(2): e0117845 (2015)

 

Vaziri C, Tateishi S, Yang Y, Greenwalt A. Regulation of Y-Family Translesion Synthesis (TLS) DNA polymerases by RAD18. In ‘Translesion DNA polymerases: from DNA repair and beyond’ Editors: Domenico Maiorano & Dr. Jean-Sébastian Hoffmann ISBN 978-81-308-0538-2 (2014)

 

Hu, L., Kim, T. M., Son, M. Y., Kim, S. A., Holland, C. L., Tateishi, S., Kim, D. H., Yew, P. R., Montagna, C., Dumitrache, L. C., Hasty, P. Two replication fork maintenance pathways fuse inverted repeats to rearrange chromosomes. Nature 501, 569-572 (2013)

 

Durando, M., Tateishi, S., Vaziri, C. A non-catalytic role of DNA polymerase η in recruiting Rad18 and promoting PCNA monoubiquitination at stalled replication forks.Nucleic Acids Res. 41, 3079-3093 (2013)http://nar.oxfordjournals.org/content/41/5/3079.long

 

Nakazawa, Y., Sasaki, K., Mitsutake, N., Matsuse, M., Shimada, M., Ohyama, K., Ito, K., Masuyama, R., Kudo, T., Utani, A., Takenaka, K., Miki, Y., Nardo, T., Stefanini, M., Takahashi, Y., Yamashita, S., Tateishi, S., Lehmann, A., Yoshiura, K., Ogi, T. Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair. Nat. genet. 44, 586-592 (2012)

 

Hashimoto, K., Cho, Y., Yang, I., Akagi, J., Ohashi, E., Tateishi, S., Wind, N., Hanaoka, F., Ohmori, H., Moriya, M. The vital role of pol ζ and REV1 in mutagenic, but not correct, DNA synthesis across benzo[α]pyrene-dG and the recruitment of pol ζ by REV1 to a replication-stalled site. J.Biol. Chem.287, 9613-9622 (2012)

 

Hendel, A., Krijger, P. H., Diamant, N., Goren, Z., Langerak, P., Kim, J., ReiBner, T., Lee, K. Y., Geacintov, N. E., Carell, T., Myung, K., Tateishi, S., D’Andrea, A., Jacobs, H., Livneh, Z. PCNA ubiquitination is important, but not essential for translesion DNA synthesis in mammalian cells. PLoS Genet.(9) e1002262. (2011)

 

Yanagihara, H., Kobayashi, J., Tateishi, S., Kato, A., Matsuura, S., Tauchi, H., Yamada, K., Takezawa, J., Sugasawa, K., Masutani, C., Hanaoka, F., Weemaes, C. M., Mori, T., Komatsu, K. NBS1 recruits RAD18 via a RAD6-like domain and regulates Pol η-dependent translesion DNA synthesis. Mol. Cell 43, 788-797 (2011)

http://www.sciencedirect.com/science/article/pii/S1097276511005910

 

Day, T. A., Palle, K., Barkley, L. R., Kakusho, N., Zou, Y., Tateishi, S., Verreault, A., Masai, H., Vaziri, C. Phosphorylated Rad 18 directs DNA Polymerase η to sites of stalled replication. J. Cell Biol. 191, 953-966 (2010)

 

Song, I.Y., Palle, K., Gurkar, A., Tateishi, S., Kupfer, G. M., Vaziri, C. Rad18-mediated translesion synthesis of bulky DNA adducts is coupled to activation of the Fanconi anemia DNA repair pathway. J. Biol. Chem. 285, 31525-31536 (2010)

 

Yoshimura, A., Seki, M., Kanamori, M., Tateishi, S., Tsurimoto, T., Tada, S., Enomoto, T. Physical and functional interaction between WRNIP1 and RAD18. Genes Genet. Syst. 84, 171-178 (2009)

 

Watanabe, K., Iwabuchi, K., Sun, J., Tsuji, Y., Tani, T., Tokunaga, K., Date, T., Hashimoto, M., Yamaizumi, M. and *Tateishi, S. RAD18 promotes DNA double-strand break repair during G1 phase through chromatin retention of 53BP1. Nucleic Acids Res.37, 2176-2193 (2009) *corresponding authorhttp://nar.oxfordjournals.org/content/37/7/2176.long

 

Sun, J., Yomogida, K., Sakao, S., Yamamoto, H., Yoshida, K., Watanabe, K., Morita, T., Araki, K., Yamamura, K. and *Tateishi, S. Rad18 is required for long-term maintenance of spermatogenesis in mouse testes. Mech. Dev. 126, 173-183 (2009) *corresponding author http://www.sciencedirect.com/science/article/pii/S0925477308001780

 

Hashimoto S., Egawa, K., Ihn, H. and *Tateishi, S. Non-radioisotope Method for Diagnosing Photosensitive Genodermatoses and A New Marker for Xeroderma Pigmentosum Variant J. Dermatol. 36, 138–143 (2009) *corresponding author

 

Tomida, J., Masuda, Y., Hiroaki, H., Ishikawa, T., Song, I., Tsurimoto, T., Tateishi, S., Shiomi, T., Kamei, Y., Kim, J., Kamiya, K., Vaziri, C., Ohmori, H. and Todo, T.  DNA damage induced ubiquitylation of RFC2 subunit of RFC complex. J. Biol. Chem.283, 9071-9079 (2008) 

Tsuji, Y., Watanabe, K., Araki, K., Shinohara, M., Yamagata, Y., Tsurimoto, T., Hanaoka, F., Yamamura, K., Yamaizumi, M., and *Tateishi, S. Recognition of forked and single-stranded DNA structures by human RAD18 complexed with RAD6B protein triggers its recruitment to stalled replication forks. Genes Cells 13, 343-354 (2008) *corresponding author http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2443.2008.01176.x/abstract

 

Hashimoto, S., Suga, T., Kudo, E., Ihn, H., Uchino, M., and *Tateishi, S. Adult onset neurological degeneration in a patient with Cockayne syndrome and a null mutation in the CSB gene. J. Invest. Dermatol. 128, 1597-1599 (2008) *corresponding author http://www.nature.com/jid/journal/v128/n6/full/5701210a.html

 

Hashimoto, S., Egawa, K., Ihn, H., Igarashi, A., Matsunaga, T., *Tateishi, S., and Yamaizumi, M.  A New Disorder in UV-Induced Skin Cancer with Defective DNA Repair Distinct from Xeroderma Pigmentosum or Cockayne Syndrome. J. Invest. Dermatol. 128, 694-701 (2008) *corresponding authorhttp://www.nature.com/jid/journal/v128/n3/full/5701056a.html

 

Shiomi, N., Mori, M., Tsuji, H., Imai, T., Inoue, H., Tateishi, S., Yamaizumi, M. and Shiomi, T. Human RAD18 is involved in S phase-specific single-strand break repair without PCNA monoubiquitination. Nucleic Acids Res. 35, e9 (2007)

 

Lloyd, A. G., Tateishi, S., Bieniasz, P. D., Muesing, M. A., Yamaizumi, M., Mulder, L. C. F. Effect of DNA repair protein Rad18 on viral infection. PLoS Pathog. May;2 (5): e40. Epub (2006)http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.0020040

 

Bi, X, Barkley, L. R., Slater, D. M., Tateishi, S., Yamaizumi, M., Ohmori, H., Vaziri, C. Rad18 regulates DNA polymerase κ and is required for recovery from S-phase checkpoint-mediated arrest. Mol. Cell. Biol. 26, 3527-3540 (2006)

 

Masuyama, S., Tateishi S., Yomogida, K., Nishimune, Y., Suzuki, K., Sakuraba, Y., Inoue, H., Ogawa, M. and Yamaizumi, M. Regulated expression and dynamic changes in subnuclear localization of mammalian Rad18 under normal and genotoxic conditions.Genes Cells 10, 753-762 (2005) http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2443.2005.00874.x/abstract

 

Miyase, S., Tateishi, S., Watanabe, K., Tomita, K., Suzuki, K., Inoue, H. and Yamaizumi, M. Differential regulation of Rad18 through Rad6- dependent mono- and polyubiquitination. J. Biol. Chem.280, 515-524 (2005)
http://www.jbc.org/content/280/1/515.long

 

*Watanabe, K., *Tateishi, S., Kawasuji, M ., Tsurimoto, T., Inoue, H. and Yamaizumi, M.: Rad18 guides polη to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J. 23, 3886-3896 (2004) *equal contribution
http://www.nature.com/emboj/journal/v23/n19/full/7600383a.html

 

Sonoda, E., Okada, T., Zhao, G. Y., Tateishi, S., Araki, K., Yamaizumi, M., Yagi, T., Verkaik, N. M., van Gents, D. C., Takata M. and Takeda S.: Multiple roles of Rev3, the catalytic subunit of polξ in maintaining genome stability in vertebrate. EMBO J. 22, 3188-3197 (2003)

 

Tateishi, S., Niwa, H., Miyazaki, J., Fujimoto, S., Inoue, H. and Yamaizumi, M. Enhanced Genomic Instability and Defective Postreplication Repair in RAD18 Knockout Mouse Embryonic Stem Cells. Mol. Cell. Biol. 23, 474-481 (2003)http://mcb.asm.org/content/23/2/474.long

 

Okada, T., Sonoda, E., Yamashita, Y. M., Koyoshi, S., Tateishi, S., Yamaizumi, M., Takata, M., Ogawa, O. and Takeda, S. Involvement of vertebrate pol kin Rad18-independent postreplication repair of UV damage. J. Biol. Chem. 227, 48690-48695 (2002)

 

Yamashita, Y. M., Okada, T., Matsusaka, T., Sonoda, E., Zhao, G. Y., Araki, K., Tateishi, S., Yamaizumi, M. and Takeda, S. RAD18 and RAD54 cooperatively contribute to maintenance of genomic stability in vertebrate cells. EMBO J.21, 5558-5566 (2002)

  
Tateishi, S., Sakuraba Y., Masuyama, S., Inoue, H. and Yamaizumi M. Dysfunction of human Rad18 results in defective postreplication repair and hypersensitivity to multiple mutagens. Proc. Natl. Acad. Sci. USA 97, 7927-7932 (2000)http://www.pnas.org/content/97/14/7927.long