

タンパク質の世話人 分子シャペロン

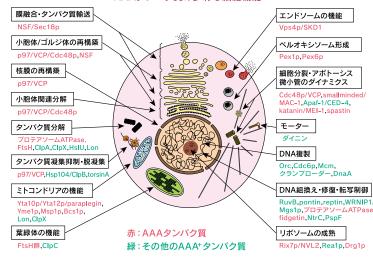
細胞内にあるタンパク質は遺伝情報に従ってア ミノ酸がつながったもので、伸ばすとヒモ状になり ますが、伸びた状態では機能を果たせません。タン パク質が機能を果たすために大切なのは形。アミノ 酸の並び方が決まれば、タンパク質の形は、ある法 則に従ってつくられます。

ところがタンパク質は繊細で、熱などのストレス がかかると簡単に構造が壊れ、ほかのタンパク質と くっついて凝集体をつくってしまいます。その時、重 要な役割を果たすのが、小椋光教授が研究テーマ とする分子シャペロンです。「分子シャペロン自体 もタンパク質の一種で、異常なタンパク質が生まれ ないか監視したり、変性したタンパク質をもとに戻 す役割を持っています」。細胞の機能という"ドラ マ"を演じる役者が、きちんと演技ができるように マネジメントしているような存在が分子シャペロン だと小椋教授は言います。

分子シャペロンの中でも、小椋教授が研究対象 としているのが、『AAAファミリータンパク質』。ほ かのシャペロンとは違う多様な役割を持ち、最大の 特徴は、変性し固まってしまったタンパク質を解き ほぐすことができること。「そして、不要になったタ ンパク質を壊し、アミノ酸に戻す機能を持つものも あります。そのアミノ酸は新しいタンパク質をつく る材料として使われます」。AAAファミリータンパ ク質は、いわば、細胞内のリサイクルというエコシス テムも担っているのです。

疾患予防や治療への道も まずは基礎研究から

分子シャペロンの機能解析は、アルツハイマー病 やパーキンソン病などの神経変性疾患ともかかわり ます。「疾患の原因が、タンパク質が線維状になった アミロイド線維という構造体であると考えられてお り、分子シャペロンには、このアミロイド線維を解消 する働きがあるためです」と小椋教授。原因タンパク 質がアミロイド線維をつくりやすい性質を持つこと と、分子シャペロンの活性が変化することが神経変 性疾患とかかわっていますが、詳しい仕組みはまだ わかっておらず、「タンパク質の線維状という異常な 状態も、疾患によって種類が違うため、さまざまな面 からの研究が必要です」。また、ALS(筋萎縮性側索 硬化症)に関係しているAAAタンパク質があり、研 究が進められています。

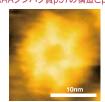

疾患の機構解明も大切ですが、やはり、分子シャペ ロンのメカニズムをきちんと理解することは不可欠 だと小椋教授。「基礎研究は、"いつどう役に立つかは さておき"という部分があります。でも、今まで誰も知 らないことを誰もやらなかった方法で明らかにする。 そうすれば、必ず何らかの形で役に立つものだと思い ます。役に立つということを前提にすると、研究が変 質してしまうこともあるのではないでしょうかしやは り研究は、興味に従ってやるべきもの。「評価されるか ら、はやりだから。そんな理由で、自分の興味からか

い離してしまっては、新しいことを見つけることはで きません。興味に沿って目的がはっきりしていること が大事です」と小椋教授は語ります。

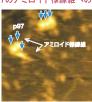
解析を促進する 高速原子間力顯微鏡

小椋研究室には近年、高速原子間力顕微鏡とい う特殊な顕微鏡が導入されました。「細胞の中で働 くタンパク質の形と動きを同時に見ることは簡単 ではありません。目的のタンパク質を蛍光標識した りすることで動いていることは見えますが、それ は、動いている車のライトを見ているようなもの。 車そのものの形はわかりません」。タンパク質の研 究には結晶構造解析という、結晶をつくって原子レ ベルで構造を見る方法もありますが、この場合には 静止画像です。静止画像をつないで形の変化を推 測することはできますが、あくまで想像。「実際に機 能しているものの形の変化を時間の進行とともに 見るには、高速原子間力顕微鏡は有効な手段で す」。従来の手法では得ることができなかったデー タが得られるようになり、AAAファミリータンパク 質の解析も進展しています。「高速原子間力顕微鏡 のように、直接見ること。百聞は一見にしかずで、理 屈抜きでシンプルに見ることで初めてわかること もたくさんあります」と小椋教授。見えないものを できる限りのデータから推測し、できる限りの技術 で検証することに加えて、実物とその動きを自分の 日で確かめられるなら、研究も加速します。

AAAタンパク質の多彩な細胞機能


AAAタンパク質 p97/VCP

骨パジェット病と前頭側頭葉型認知症を伴う家族性封入体筋炎(IBMPFD) 筋萎縮性側索硬化症(ALS)、遺伝性痙性対麻痺、肩甲腓骨型筋ジストロフィー、 首下がり症候群、シャルコー・マリー・トゥース病2型 遺伝性痙性対麻痺(AD-HSP)、筋萎縮性側索硬化症(ALS) 请伝性痙性対麻痺(AR-HSP) 脊髄小脳失調症28型(SCA28)、痙性失調ニューロパチー症候群 育館小順大嗣正と3型(3UA20)、理は大副一ユーロイゲー症候群、 ミトコンドリア複合体II欠損症、GRACILE症候群、Björnstad症候群、細原 ベルオキシソーム病(Zellweger症候群、新生児型副腎白質ジストロフィー 乳児型Refsum病) ctad症候群 細尿管症


BCS1L Pex1p, Pex6p AAA+タンパク質 CLPXP LONP1 CLPB

八口一連 映経 大脈眼歯耳介骨格 (CODAS)症候群 白内障・神経障害・好中球減少を伴う3・メチルグルタコン酸尿症 ジストニア 原発性線毛ジスキネジア (PCD)・カルタゲナー症候群 Axonemal dynein シャルコー・マリー・トゥース病、脊髄性筋萎縮、重度知的障害、窒息性胸郭ジストロフィー、 短肋骨多指症候群タイプIII、大脳皮質発生異常、滑脳症(ミラー・ディッカー症候群) もやもや病マイヤー・ゴーリン症候群 Mysterin/RNF213 ORC1, ORC4, CDC6 SPATA5

AAAタンパク質p97の構造とp97のアミロイド様線維への結合の高速原子間力顕微鏡観察

Paraplegin AFG3L2

Teaching Staff

准教授

山中 邦俊 やまなかくにとし

線虫を用いて、AAAシャペロンの機能解析および その破綻により引き起こされる疾患の発症機序の 解明を研究テーマとしています。新しい"何か"を見 つけるためには、アイデアを捻り出し、目標に向 かって粘り強く努力し続けることが大事だと思って います。

助 教

小頭症、知的障害

江崎 雅俊 えさき まさとし

生体の基本単位である細胞の中の秩序を守るし くみに興味があり、細胞生物学・生化学などの手 法を使って研究しています。発生研の様々な研究 サポート体制のおかげもあり、化学科卒の私でも いろいろな手法を行うことができています。

09 10